EFFECT OF TEMPRETURE ON BIOCHEMICAL CONTENTS OF FRESH WATER MUSSELS LAMELLIDENS MARGINALIS FROM NANDED REGION MAHARASHTRA.

A. V. Suryawanshi

Research Scholar Dept. of Fishery Science N.E.S .Science College Nanded. (M.S.) 431605.

ABSTACT

This investigation evaluate that there is relation between changes in temperature which directly affects the biochemical contents of mussels *Lamellidens marginalis* such as Protein, glycogen and lipid. With increase in temperature Protein, glycogen and lipid was found maximum in summer and it was minimum in winter.

Key words- temperature, protein, glycogen, lipid and Lamellidens marginalis.

INTRODUCTION

In freshwater bivalves, are economically important animals, they are consumed as a food and used for pearl culture. They are the high source of protein, essential minerals and vitamin. The shell consists of two calcified valves which are united dorsally by a hinge. The shell is bilaterally symmetrical and margins are distinguished into anterior, posterior, dorsal and ventral sides. In *L. marginalis* the shell is oblong-ovate, thin and smooth. Bivalves are filter feeder constitute high food value and having maximum amount of biochemical constituents of body tissue in terms of quantity and quality. (Rivonker, C.U. and A.H. Parulekar, 1995).

MATERIALS & METHODS

The bivalves, *Lamellidens margianlis* was collected monthly from Nanded region, Maharashtra. Estimation of protein, glycogen and lipid were monthly from foot, gill, and hepatopancreas. Water temperature was measured by using Celsius Thermometer (from 0°C - 50°C) **Trivedy & Goel, (1986) and APHA (2000). Estimation of protein** by using **Lowry method** (Lowry *et al.*, 1951). **Estimation of glycogen** Glycogen by using anthrone reagent method (De-Zwaan and Zandee (1972). **Estimation of lipid** by using Menthol- Chloroform method by (Bligh and Dyer, 1959).

RESULT & DISCUSSION

Maximum water temperature was found in May (30°c) and minimum in December (18°c). Range of variation of water temperature was 12°c. Average water temperature was 23.9 °c in the year 2013. Table shows maximum protein content in summer from *Lamellidens marginalis* and minimum in winter, maximum protein content was found in hepatopancreas that is 304 ± 0.0065 mg/gm and minimum in foot 20 ± 0.0104 mg/gm. Glycogen content was more during summer season in all tissues. It was increased gradually from March to May and from July onwards it was decreased gradually and reached to lowest level in winter. It was again gradually increased. maximum glycogen was found during summer season in hepatopancreas (309.62 ± 0.5184 mg) Minimum amount of glycogen was found in foot 31.32 ± 0.0023 in winter season. The lipid content was maximum in foot 14.74 \pm 0.6228, in gill 7.87 ± 0.1528 and in hepatopancreas 4.4 ± 0.5477 . Minimum value of lipid observed in foot 2 ± 0.4472 , in mantel 2.6 ± 0.5477 , in gill 2.1 ± 0.2683 and in hepatopancreas 0.92 ± 10463 show in table. This study showed that as temperature rises it increase protein, glycogen and lipid content tissue. This study showed the direct relation between the biochemical content of mussel with the temperature. Because availability of adequate quantity of food during summer.

MONTH	PROTIEN			GLYCOGEN			LIPID			TEM
	F mg/gm	G mg/gm	HP mg/gm	F mg/gm	G mg/gm	HP mg/gm	F mg/gm	G mg/gm	HP mg/gm	°c
Jan	26± 0.0178	29± 0.0054	41± 0.0148	36.27± 0.0079	36.27± 0.0136	50.59± 0.0230	2.6± 1.5165	3.4± 0.5477	3± 1.3416	20
Feb	26± 0.0228	41± 0.0089	50± 0.0650	46.00± 0.0005	47.29± 0.0035	53.37± 0.0029	4.2± 0.9898	7.87± 0.1528	4.2± 0.8366	24
Mar	103± 0.0924	187± 0.6507	287± 0.0258	71.32± 0.3687	58.32± 0.2429	93.40± 0.1714	13.28± 0.04472	4.4± 0.5477	4.4± 0.5477	25
Apr	271± 0.0367	298± 0.0030	304± 0.0065	121.14± 0.1959	143.98 ± 0.4481	214.77± 0.4548	14.4± 0.8944	6.6± 0.5477	4.2± 0.4472	26
May	263± 0.0206	295± 0.0657	298± 0.0083	137.22± 0.0009	275.57± 0.0778	309.62± 0.5184	14.74 ± 0.6228	4.8 ± 0.4472	2.8± 0.4472	32
Jun	261± 0.0155	288± 0.0499	294± 0.0532	71.27± 0.0181	80.34± 0.0151	285.11± 0.0277	12.62± 0.9311	4.6± 0.5477	2.6± 0.5477	30
July	164± 0.0576	200± 0.0310	229± 0.1353	36.27± 0.0131	36.27± 0.0048	50.29± 0.0004	12.58 ± 0.3834	4.3 ± 0.1028	2.6± 0.5477	28

TABLE: SHOWES MONTHALY CHANGES IN, PROTIEN, GLYCOGEN AND LIPID CONTENT DUE TO TEMPRETURE FROM LAMELLIDENS MARGINALIS.

© 2020 JETIR September 2020, Volume 7, Issue 9

www.jetir.org (ISSN-2349-5162)

Aug	57± 0.1175	133± 0.0593	$\begin{array}{c} 162 \pm \\ 0.6035 \end{array}$	34.59± 0.1046	35.72± 0.0005	40.40± 0.0004	11.66± 0.01788	3.6± 0.5477	2.4± 0.5477	27
Sep	55.8± 0.0106	123± 0.0011	142± 0.0025	34.59± 0.0016	34.59± 0.1046	36.27± 0.0005	8.48± 2.5014	3.23± 1.1303	2.4± 1.6431	26
Oct	46.5± 0.0136	65± 0.0853	88± 0.1790	33.48± 0.0011	33.48± 0.001	38.02± 0.0010	6.44 ± 3.1033	2.6± 05477	1.6± 0.5477	25
Nov	20± 0.0104	45± 0.0193	88± 0.1790	33.48± 0.001	32.95± 0.0038	39.20± 0.0005	6.54± 2.0628	2.36± 0.08944	1.23± 1.7474	22
Dec	20± 0.0104	29± 0.0452	29± 0.0054	31.32± 0.0023	26.23± 0.0081	32.39± 0.0048	2± 0.4472	2.1± 0.2683	0.92 ± 1.0463	20

(F- foot, G- gills, HP- hipatopancreas)

REFERENCES

APHA (2000): (American Public Health Association Manual) standard method for Examination of water and west management. 19 th edition AWWA-APCF Washington, DC 20005.

Bligh E.G. & Dyer W.J. (1959): A rapid method of total lipid extraction and purification. *Canadian Journal of Biochemistry and Physiology*, 37(8): 911-917p.

De-Zwaan, A. and Zandee, B. (1972): Body distribution and seasonal changes in glycogen content of common sea mussel, *Mytilus edulis. Comp. Biochem. Physiol.*, 43(A): 53-58p.

Lowry O. H., Rosebrough N. J., Farr A. L. and R. J. Randall (1951): Protein measurement with Folin phenol reagent. J. Biol. Chem. 193: 265-275p.

Trivedy R.K . and Goel P. K. (1986): Chemical and Bilogical methods for water pollution studies. *Environmental publication*, Karad, 250p.

Rivonker, C.U. and A.H. Parulekar (1995): Proximate Biochemical composition and caloric potential in the Raft - Grown Green mussel *Perna viridis*. J. Marine Biological Association. India, 37: 231-236.

Umunnakwe (2011): preliminary assessment of some physico-chemical parameters during Dredging of Nworie river, Owerri. *Pakistan Journal of Nutrition*, Vol. 10 (3): 269- 273p.

Untoo Syed A., Saltanat Parveen and Uzma Ahmad (2016): Limnological status and plankton dynamics in two fresh water wetlands of Aligarh, North India. *Journal of Environmental Science, Toxicology and Food Technology* Volume 10, Issue 9 Ver. I : 120-128p.

Yambem Tenjing Singh, Machina Krishnamoorthy and Seetharamaiah Thippeswamy (2012): Seasonal changes in the biochemical composition of wedge clam, *Donax scortum* from the Padukere beach, Karnataka.